Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.003
Filtrar
1.
Protein Sci ; 33(6): e4997, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38723110

RESUMEN

Rieske oxygenases (ROs) are a diverse metalloenzyme class with growing potential in bioconversion and synthetic applications. We postulated that ROs are nonetheless underutilized because they are unstable. Terephthalate dioxygenase (TPADO PDB ID 7Q05) is a structurally characterized heterohexameric α3ß3 RO that, with its cognate reductase (TPARED), catalyzes the first intracellular step of bacterial polyethylene terephthalate plastic bioconversion. Here, we showed that the heterologously expressed TPADO/TPARED system exhibits only ~300 total turnovers at its optimal pH and temperature. We investigated the thermal stability of the system and the unfolding pathway of TPADO through a combination of biochemical and biophysical approaches. The system's activity is thermally limited by a melting temperature (Tm) of 39.9°C for the monomeric TPARED, while the independent Tm of TPADO is 50.8°C. Differential scanning calorimetry revealed a two-step thermal decomposition pathway for TPADO with Tm values of 47.6 and 58.0°C (ΔH = 210 and 509 kcal mol-1, respectively) for each step. Temperature-dependent small-angle x-ray scattering and dynamic light scattering both detected heat-induced dissociation of TPADO subunits at 53.8°C, followed by higher-temperature loss of tertiary structure that coincided with protein aggregation. The computed enthalpies of dissociation for the monomer interfaces were most congruent with a decomposition pathway initiated by ß-ß interface dissociation, a pattern predicted to be widespread in ROs. As a strategy for enhancing TPADO stability, we propose prioritizing the re-engineering of the ß subunit interfaces, with subsequent targeted improvements of the subunits.


Asunto(s)
Estabilidad de Enzimas , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Modelos Moleculares , Dioxigenasas/química , Dioxigenasas/metabolismo , Dioxigenasas/genética , Temperatura , Escherichia coli/enzimología , Escherichia coli/genética , Escherichia coli/metabolismo , Tereftalatos Polietilenos/química , Tereftalatos Polietilenos/metabolismo , Concentración de Iones de Hidrógeno , Complejo III de Transporte de Electrones
2.
Protein Eng Des Sel ; 372024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38713696

RESUMEN

Plastic degrading enzymes have immense potential for use in industrial applications. Protein engineering efforts over the last decade have resulted in considerable enhancement of many properties of these enzymes. Directed evolution, a protein engineering approach that mimics the natural process of evolution in a laboratory, has been particularly useful in overcoming some of the challenges of structure-based protein engineering. For example, directed evolution has been used to improve the catalytic activity and thermostability of polyethylene terephthalate (PET)-degrading enzymes, although its use for the improvement of other desirable properties, such as solvent tolerance, has been less studied. In this review, we aim to identify some of the knowledge gaps and current challenges, and highlight recent studies related to the directed evolution of plastic-degrading enzymes.


Asunto(s)
Evolución Molecular Dirigida , Ingeniería de Proteínas , Evolución Molecular Dirigida/métodos , Plásticos/química , Plásticos/metabolismo , Tereftalatos Polietilenos/química , Tereftalatos Polietilenos/metabolismo , Enzimas/genética , Enzimas/química , Enzimas/metabolismo
3.
Int J Biol Macromol ; 267(Pt 2): 131564, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38614174

RESUMEN

Contaminating microplastics can interact with food proteins in the food matrix and during digestion. This study investigated adsorption of chicken egg protein ovalbumin to polystyrene (PS, 110 and 260 µm) and polyethylene terephthalate (PET, 140 µm) MPs in acidic and neutral conditions and alterations in ovalbumin structure. Ovalbumin adsorption affinity depended on MPs size (smaller > larger), type (PS > PET) and pH (pH 3 > pH 7). In bulk solution, MPs does not change ovalbumin secondary structure significantly, but induces loosening (at pH 3) and tightening (at pH 7) of tertiary structure. Formed soft corona exclusively consists of full length non-native ovalbumin, while in hard corona also shorter ovalbumin fragments were found. At pH 7 soft corona ovalbumin has rearranged but still preserved level of ordered secondary structure, resulting in preserved thermostability and proteolytic stability, but decreased ability to form fibrils upon heating. Secondary structure changes in soft corona resemble changes in native ovalbumin induced by heat treatment (80 °C). Ovalbumin is abundantly present in corona around microplastics also in the presence of other egg white proteins. These results imply that microplastics contaminating food may bind and change structure and functional properties of the main egg white protein.


Asunto(s)
Microplásticos , Ovalbúmina , Tereftalatos Polietilenos , Poliestirenos , Ovalbúmina/química , Poliestirenos/química , Microplásticos/química , Tereftalatos Polietilenos/química , Concentración de Iones de Hidrógeno , Adsorción , Animales , Pollos , Estructura Secundaria de Proteína
4.
Chemosphere ; 357: 141968, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38615965

RESUMEN

Understanding the fundamental physical characteristics of extremely toxic compounds and their behavior across different environments plays a crucial role in assessing their danger. Additionally, this knowledge informs the development of protocols for gathering forensic evidence related to harmful chemicals misuse. In 2018, former Russian spy Sergei Skripal and his daughter were poisoned in Salisbury, England, with a substance later identified as the unconventional nerve agent A-234. Contamination with the compound was found on items inside Skripal's home. The aim of this paper was to determine the persistence of A-234 on selected indoor surfaces. Ceramics, aluminum can, laminated chipboard, polyvinyl chloride (PVC) floor tile, polyethylene terephthalate (PET) bottle, acrylic paint and computer keyboard were used as matrices. The decrease in surface contamination and further fate of the compound was monitored for 12 weeks. Persistence determination involved optimizing the wipe sampling method. Simultaneously, evaporation from the surface and permeation of the contaminant into the matrix were closely monitored. The experimental findings indicate that the nerve agent exhibits remarkable persistence, particularly on impermeable surfaces. Notably, the process of A-234 evaporation plays a minor role in determining its fate, with detectable concentrations observed solely above solid, non-porous surfaces such as ceramics and aluminum can. The surface persistence half-life varied significantly, ranging from 12 min to 478 days, depending on the material. The article has implications for emergency response protocols, decontamination strategies, public health and crime scene investigations.


Asunto(s)
Agentes Nerviosos , Agentes Nerviosos/análisis , Monitoreo del Ambiente , Contaminación del Aire Interior/análisis , Tereftalatos Polietilenos/química
5.
ACS Sens ; 9(4): 1809-1819, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38587867

RESUMEN

While most of the research in graphene-based materials seeks high electroactive surface area and ion intercalation, here, we show an alternative electrochemical behavior that leverages graphene's potential in biosensing. We report a novel approach to fabricate graphene/polymer nanocomposites with near-record conductivity levels of 45 Ω sq-1 and enhanced biocompatibility. This is realized by laser processing of graphene oxide in a sandwich structure with a thin (100 µm) polyethylene terephthalate film on a textile substrate. Such hybrid materials exhibit high conductivity, low polarization, and stability. In addition, the nanocomposites are highly biocompatible, as evidenced by their low cytotoxicity and good skin adhesion. These results demonstrate the potential of graphene/polymer nanocomposites for smart clothing applications.


Asunto(s)
Grafito , Rayos Láser , Textiles , Grafito/química , Humanos , Técnicas Electroquímicas/métodos , Nanocompuestos/química , Conductividad Eléctrica , Tereftalatos Polietilenos/química , Animales , Materiales Biocompatibles/química , Técnicas Biosensibles/métodos
6.
Biotechnol J ; 19(4): e2400053, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38593303

RESUMEN

The rapid escalation of plastic waste accumulation presents a significant threat of the modern world, demanding an immediate solution. Over the last years, utilization of the enzymatic machinery of various microorganisms has emerged as an environmentally friendly asset in tackling this pressing global challenge. Thus, various hydrolases have been demonstrated to effectively degrade polyesters. Plastic waste streams often consist of a variety of different polyesters, as impurities, mainly due to wrong disposal practices, rendering recycling process challenging. The elucidation of the selective degradation of polyesters by hydrolases could offer a proper solution to this problem, enhancing the recyclability performance. Towards this, our study focused on the investigation of four bacterial polyesterases, including DaPUase, IsPETase, PfPHOase, and Se1JFR, a novel PETase-like lipase. The enzymes, which were biochemically characterized and structurally analyzed, demonstrated degradation ability of synthetic plastics. While a consistent pattern of polyesters' degradation was observed across all enzymes, Se1JFR stood out in the degradation of PBS, PLA, and polyether PU. Additionally, it exhibited comparable results to IsPETase, a benchmark mesophilic PETase, in the degradation of PCL and semi-crystalline PET. Our results point out the wide substrate spectrum of bacterial hydrolases and underscore the significant potential of PETase-like enzymes in polyesters degradation.


Asunto(s)
Hidrolasas , Poliésteres , Hidrolasas/metabolismo , Poliésteres/química , Bacterias/metabolismo , Lipasa , Tereftalatos Polietilenos/química
7.
Waste Manag ; 182: 91-101, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38643526

RESUMEN

The recycling of polyethylene terephthalate (PET) stands as an effective strategy for mitigating plastic pollution and reducing resource waste. The study aimed to investigate the characterization and elimination efficiency of volatile organic compounds (VOCs) present in rPET at various recycling stages using comprehensive two-dimensional gas chromatography-quadrupole-time-of-flight-mass spectrometry coupled with chemometrics. The results revealed that 52, 135, 95, 44, and 33 VOCs, mostly classified into three chemical groups, were tentatively identified in virgin - PET (v-PET), cold water washed - rPET (C-rPET), decontaminated - rPET (D-rPET), melt-extruded - rPET (M-rPET), and solid-state polycondensation - rPET (S-rPET), respectively. Regarding the VOCs with high and median detection frequencies, fatty acyls showed the highest elimination efficiency (100 % and 92 %), followed by organooxygen compounds (81 % and 99 %), others (97 % and 95 %), and benzene and substituted derivatives (82 % and 95 %) in term of HS-SPME. Following the recycling process, there was a general decrease in the concentration of almost all VOCs, as evidenced by the substantial reduction of o-Xylene, hexanoic acid, octanal, and D-limonene from 18.11, 22.43, 30.74, and 7.41 mg/kg to 0, 0, 3.97, and 0 mg/kg, respectively. However, it was noteworthy that the VOCs identified in the samples were not completely extracted, owing to the limitations of HS-SPME. Furthermore, chemometrics analysis indicated significant discrimination among VOCs from vPET, C-rPET, D-rPET, and M-rPET, while indistinct differences were observed between M-rPET and S-rPET. This study contributes to the enhancement of the recycling process and emphasizes the importance of safeguarding consumer health in terms of elimination of VOCs.


Asunto(s)
Tereftalatos Polietilenos , Reciclaje , Compuestos Orgánicos Volátiles , Tereftalatos Polietilenos/química , Compuestos Orgánicos Volátiles/análisis , Reciclaje/métodos , Cromatografía de Gases y Espectrometría de Masas , Microextracción en Fase Sólida/métodos
8.
Molecules ; 29(6)2024 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-38542974

RESUMEN

PETase exhibits a high degradation activity for polyethylene terephthalate (PET) plastic under moderate temperatures. However, the effect of non-active site residues in the second shell of PETase on the catalytic performance remains unclear. Herein, we proposed a crystal structure- and sequence-based strategy to identify the key non-active site residue. D186 in the second shell of PETase was found to be capable of modulating the enzyme activity and stability. The most active PETaseD186N improved both the activity and thermostability with an increase in Tm by 8.89 °C. The PET degradation product concentrations were 1.86 and 3.69 times higher than those obtained with PETaseWT at 30 and 40 °C, respectively. The most stable PETaseD186V showed an increase in Tm of 12.91 °C over PETaseWT. Molecular dynamics (MD) simulations revealed that the D186 mutations could elevate the substrate binding free energy and change substrate binding mode, and/or rigidify the flexible Loop 10, and lock Loop 10 and Helix 6 by hydrogen bonding, leading to the enhanced activity and/or thermostability of PETase variants. This work unraveled the contribution of the key second-shell residue in PETase in influencing the enzyme activity and stability, which would benefit in the rational design of efficient and thermostable PETase.


Asunto(s)
Hidrolasas , Tereftalatos Polietilenos , Hidrolasas/química , Tereftalatos Polietilenos/química , Simulación de Dinámica Molecular , Mutación
9.
J Biol Chem ; 300(3): 105783, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38395309

RESUMEN

Poly(ethylene terephthalate) (PET) is a major plastic polymer utilized in the single-use and textile industries. The discovery of PET-degrading enzymes (PETases) has led to an increased interest in the biological recycling of PET in addition to mechanical recycling. IsPETase from Ideonella sakaiensis is a candidate catalyst, but little is understood about its structure-function relationships with regards to PET degradation. To understand the effects of mutations on IsPETase productivity, we develop a directed evolution assay to identify mutations beneficial to PET film degradation at 30 °C. IsPETase also displays enzyme concentration-dependent inhibition effects, and surface crowding has been proposed as a causal phenomenon. Based on total internal reflectance fluorescence microscopy and adsorption experiments, IsPETase is likely experiencing crowded conditions on PET films. Molecular dynamics simulations of IsPETase variants reveal a decrease in active site flexibility in free enzymes and reduced probability of productive active site formation in substrate-bound enzymes under crowding. Hence, we develop a surface crowding model to analyze the biochemical effects of three hit mutations (T116P, S238N, S290P) that enhanced ambient temperature activity and/or thermostability. We find that T116P decreases susceptibility to crowding, resulting in higher PET degradation product accumulation despite no change in intrinsic catalytic rate. In conclusion, we show that a macromolecular crowding-based biochemical model can be used to analyze the effects of mutations on properties of PETases and that crowding behavior is a major property to be targeted for enzyme engineering for improved PET degradation.


Asunto(s)
Burkholderiales , Hidrolasas , Tereftalatos Polietilenos , Hidrolasas/química , Hidrolasas/genética , Hidrolasas/metabolismo , Tereftalatos Polietilenos/química , Tereftalatos Polietilenos/metabolismo , Reciclaje , Cinética , Burkholderiales/enzimología , Modelos Químicos
10.
Environ Sci Pollut Res Int ; 31(13): 20689-20697, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38393574

RESUMEN

Poly(ethylene terephthalate) (PET) is a very valuable and beneficial material for industrial purposes, with various different applications. Due to the high annual production volume of over 50 million tons worldwide and the indiscriminate disposal by consumers, the polymers accumulate in the environment, causing negative effects on various ecosystems. Biodegradation via suitable enzymes represents a promising approach to combat the plastic waste issue so validated methods are required to measure the efficiency and efficacy of these enzymes. PETase and MHETase from Ideonella sakaiensis are suitable enzymes needed in combination to completely degrade PET into its environmentally friendly monomers. In this project, we compare and combine a previously described bulk absorbance measurement method with a newly established 1H NMR analysis method of the PET degradation products mono(2-hydroxyethyl) terephthalic acid, bis(2-hydroxyethyl) terephthalic acid and terephthalic acid. Both were optimized regarding different solvents, pH values and drying processes. The accuracy of the measurements can be confirmed with sensitivity limits of 2.5-5 µM for the absorption method and 5-10 µM for the 1H NMR analysis. The combination of the described methods therefore allows a quantitative analysis by using bulk absorption coupled with a qualitative analysis through 1H NMR. The methods established in our work can potentially contribute to the development of suitable recycling strategies of PET using recombinant enzymes.


Asunto(s)
Hidrolasas , Ácidos Ftálicos , Hidrolasas/química , Ecosistema , Espectroscopía de Protones por Resonancia Magnética , Ácidos Ftálicos/química , Tereftalatos Polietilenos/química
11.
Environ Res ; 249: 118428, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38325788

RESUMEN

Polyethelene terephthalate (PET) is a well-known thermoplastic, and recycling PET waste is important for the natural environment and human health. This study provides a comprehensive overview of the recycling and reuse of PET waste through energy recovery and physical, chemical, and biological recycling. This article summarizes the recycling methods and the high-value products derived from PET waste, specifically detailing the research progress on regenerated PET prepared by the mechanical recycling of fiber/yarn, fabric, and composite materials, and introduces the application of PET nanofibers recycled by physical dissolution and electrospinning in fields such as filtration, adsorption, electronics, and antibacterial materials. This article explains the energy recovery of PET through thermal decomposition and comprehensively discusses various chemical recycling methods, including the reaction mechanisms, catalysts, conversion efficiencies, and reaction products, with a brief introduction to PET biodegradation using hydrolytic enzymes provided. The analysis and comparison of various recycling methods indicated that the mechanical recycling method yielded PET products with a wide range of applications in composite materials. Electrospinning is a highly promising recycling strategy for fabricating recycled PET nanofibers. Compared to other methods, physical recycling has advantages such as low cost, low energy consumption, high value, simple processing, and environmental friendliness, making it the preferred choice for the recycling and high-value utilization of waste PET.


Asunto(s)
Tereftalatos Polietilenos , Reciclaje , Tereftalatos Polietilenos/química , Reciclaje/métodos , Biodegradación Ambiental
12.
Nat Commun ; 15(1): 1417, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38360963

RESUMEN

Biotechnological plastic recycling has emerged as a suitable option for addressing the pollution crisis. A major breakthrough in the biodegradation of poly(ethylene terephthalate) (PET) is achieved by using a LCC variant, which permits 90% conversion at an industrial level. Despite the achievements, its applications have been hampered by the remaining 10% of nonbiodegradable PET. Herein, we address current challenges by employing a computational strategy to engineer a hydrolase from the bacterium HR29. The redesigned variant, TurboPETase, outperforms other well-known PET hydrolases. Nearly complete depolymerization is accomplished in 8 h at a solids loading of 200 g kg-1. Kinetic and structural analysis suggest that the improved performance may be attributed to a more flexible PET-binding groove that facilitates the targeting of more specific attack sites. Collectively, our results constitute a significant advance in understanding and engineering of industrially applicable polyester hydrolases, and provide guidance for further efforts on other polymer types.


Asunto(s)
Hidrolasas , Tereftalatos Polietilenos , Hidrolasas/metabolismo , Tereftalatos Polietilenos/química , Polímeros
13.
Int J Biol Macromol ; 260(Pt 2): 129538, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38246467

RESUMEN

Enzymatic degradation has been proposed as a suitable solution for addressing PET pollution, but approximately 10 % of PET is left as nonbiodegradable. Microbes can completely degrade PET at the gram level per year. Based on the complementary benefits of microbes and enzymes, a microbe-enzyme system was created to completely degrade PET. Here, a thermophilic microbe-enzyme (TME) system composed of Bacillus thermoamylovorans JQ3 and leaf-branch compost cutinase variant (ICCG) was used to demonstrate the synergistic degradation of PET, enabling 100 % degradation of PET waste at a high PET loading level (360 g/L). Six endogenous PET hydrolases of strain JQ3 were discovered by employing an ester bond hydrolysis function-first genome mining (EGM) strategy and first successfully expressed in E. coli. These hydrolases could release TPA as the final product from PET and preferentially degraded BHET instead of MHET. Of these, carboxylesterase 39_5 and ICCG could degrade PET in a synergistic manner to generate 50 µM of TPA, which was greater than the sum of the individual treatments. Finally, the degradation pathway of the TME system was speculated to include biofilm formation, PET degradation and utilization. The successful implementation of this study rendered a scale-up degradation feasible of PET at a lower cost.


Asunto(s)
Escherichia coli , Tereftalatos Polietilenos , Escherichia coli/metabolismo , Tereftalatos Polietilenos/química , Hidrolasas/química , Hidrólisis
14.
Chemosphere ; 350: 141076, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38169200

RESUMEN

While polyethylene terephthalate (PET) has enjoyed widespread use, a large volume of plastic waste has also been produced as a result, which is detrimental to the environment. Traditional treatment of plastic waste, such as landfilling and incinerating waste, causes environmental pollution and poses risks to public health. Recycling PET waste into useful chemicals or upcycling the waste into high value-added materials can be remedies. This review first provides a brief introduction of the synthesis, structure, properties, and applications of virgin PET. Then the conversion process of waste PET into high value-added materials for different applications are introduced. The conversion mechanisms (including degradation, recycling and upcycling) are detailed. The advanced applications of these upgraded materials in energy storage devices (supercapacitors, lithium-ion batteries, and microbial fuel cells), and for water treatment (to remove dyes, heavy metals, and antibiotics), environmental remediation (for air filtration, CO2 adsorption, and oil removal) and catalysis (to produce H2, photoreduce CO2, and remove toxic chemicals) are discussed at length. In general, this review details the exploration of advanced technologies for the transformation of waste PET into nanostructured materials for various applications, and provides insights into the role of high value-added waste products in sustainability and economic development.


Asunto(s)
Restauración y Remediación Ambiental , Nanoestructuras , Tereftalatos Polietilenos/química , Dióxido de Carbono , Reciclaje , Plásticos/química
15.
FEBS J ; 291(1): 57-60, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37731192

RESUMEN

Plastic-degrading enzymes hold immense potential for eco-friendly recycling methods. However, the catalytic rates of current enzymes do not stack up against the mammoth task of degrading millions of tons of plastic waste per year. In the quest for more efficient polyethylene terephthalate (PET)-degrading enzymes, Zhang et al. report the discovery and characterization of PET40, a versatile PET-hydrolyzing esterase that is divergent from most characterized PETases. While PET40 has comparably low hydrolytic activity on PET, Zhang et al. demonstrate its broad activity on an expanded substrate pool. This sheds light on the potential ecological role of these esterases and suggests that PET might be only a recent addition to their substrate spectrum.


Asunto(s)
Hidrolasas , Tereftalatos Polietilenos , Tereftalatos Polietilenos/química , Hidrolasas/química , Esterasas , Hidrólisis
16.
Enzyme Microb Technol ; 173: 110353, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37979402

RESUMEN

Plastic pollution poses a significant environmental challenge, with poly(ethylene terephthalate) (PET) being a major contributor due to its extensive use in single use applications such as plastic bottles and other packaging material. Enzymatic degradation of PET offers a promising solution for PET recycling, but the enzyme kinetics in relation to the degree of crystallinity (XC) of the PET substrate are poorly understood. In this study, we investigated the hypersensitive enzyme kinetic response on PET at XC from ∼8.5-12% at 50 °C using the benchmark PET hydrolysing enzyme LCCICCG. We observed a substantial reduction in the maximal enzymatic reaction rate (invVmax) with increasing XC, corresponding to a 3-fold reduction in invVmax when the XC of PET increased from 8.6% to 12.2%. The kinetic analysis revealed that the level of the Mobile Amorphous Fraction (XMAF) was a better descriptor for the enzymatic degradation rate response than XC (or (100%-XC)). By continuous monitoring of the enzymatic reaction progress, we quantified the lag phase prolongation in addition to the steady-state kinetic rates (vss) of the reactions and found that the duration of the lag phase of a reaction could be predicted from the vss and XC by multiple linear regression modeling. The linear correlation between the duration of the lag phase and the vss of the enzymatic PET degradation affirmed that the LCCICCG worked via a random/endo-type enzymatic attack pattern. The longer lag phase at increased XC of PET is proposed to be due to increased substrate entanglement density as well as unproductive enzyme binding to the crystalline regions of PET. The findings enhance our understanding of PET enzymatic degradation kinetics and its dependence on substrate composition, i.e., XMAF and XC.


Asunto(s)
Ácidos Ftálicos , Tereftalatos Polietilenos , Tereftalatos Polietilenos/química , Cinética , Etilenos , Hidrolasas/metabolismo
17.
Food Chem ; 439: 138162, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38100872

RESUMEN

This research examined the impacts of ultrasound, UV light, storage time, and temperature on the leaching of bisphenol A (BPA) from polyethylene terephthalate (PET) drinking water bottles in Turkey. The initial phase of the investigation encompassed the quantification of BPA in two distinct brands of bottled water. Samples were extracted by solid- phase extraction (SPE) and analyzed by high performance liquid chromatography with fluorescence detection (HPLC-FLD). According to the results in the first part, the highest BPA levels were found in bottled water. In the second part of the study, 10 to 30 min of ultrasound treatment increased the BPA migration with increased time in simulants. In the first and second weeks of storage at 25 °C, the effect of storage on BPA migration was below the detection limit (

Asunto(s)
Agua Potable , Tereftalatos Polietilenos , Tereftalatos Polietilenos/química , Calor , Agua Potable/análisis , Rayos Ultravioleta , Contaminación de Alimentos/análisis , Compuestos de Bencidrilo/análisis , Embalaje de Alimentos
18.
Waste Manag ; 174: 411-419, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38103351

RESUMEN

To achieve a sustainable and circular economy, developing effective plastic recycling methods is essential. Despite advances in the chemical recycling of plastic waste, modern industries require highly efficient and sustainable solutions to address environmental problems. In this study, we propose an efficient glycolysis strategy for post-consumer polyethylene terephthalate (PET) using deep eutectic solvents (DESs) to produce bis(2-hydroxyethyl) terephthalate (BHET) with high selectivity. Choline chloride (ChCl)- and urea-based DESs were synthesized using various metal salts and were tested for the glycolysis of PET waste; ChCl-Zn(OAc)2 exhibited the best performance. The DES-containing solvent system afforded a complete PET conversion, producing BHET at a high yield (91.6%) under optimal reaction conditions. The degradation mechanism of PET and its interaction with DESs were systematically investigated using density functional theory-based calculations. Furthermore, an intuitive machine learning model was developed to predict the PET conversion and BHET selectivity for different DES compositions. Our findings demonstrate that the DES-catalyzed glycolysis of post-consumer PET could enable the development of a sustainable chemical recycling process, providing insights to identify the new design of DESs for plastic decomposition.


Asunto(s)
Disolventes Eutécticos Profundos , Tereftalatos Polietilenos , Solventes/química , Tereftalatos Polietilenos/química , Glucólisis , Catálisis
19.
Bioorg Chem ; 143: 107047, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38154387

RESUMEN

Chemical protein synthesis offers a powerful way to access otherwise-difficult-to-obtain proteins such as mirror-image proteins. Although a large number of proteins have been chemically synthesized to date, the acquisition to proteins containing hydrophobic peptide fragments has proven challenging. Here, we describe an approach that combines the removable backbone modification strategy and the peptide hydrazide-based native chemical ligation for the chemical synthesis of a 28 kDa full-length PET degrading enzyme IGGC (a higher depolymerization efficiency of variant leaf-branch compost cutinase (LCC)) containing hydrophobic peptide segments. The synthetic ICCG exhibits the enzymatic activity and will be useful in establishing the corresponding mirror-image version of ICCG.


Asunto(s)
Tereftalatos Polietilenos , Hidrolasas/química , Fragmentos de Péptidos , Péptidos/química , Tereftalatos Polietilenos/química
20.
Commun Biol ; 6(1): 1135, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37945666

RESUMEN

Recently developed enzymes for the depolymerization of polyethylene terephthalate (PET) such as FAST-PETase and LCC-ICCG are inhibited by the intermediate PET product mono(2-hydroxyethyl) terephthalate (MHET). Consequently, the conversion of PET enzymatically into its constituent monomers terephthalic acid (TPA) and ethylene glycol (EG) is inefficient. In this study, a protein scaffold (1TQH) corresponding to a thermophilic carboxylesterase (Est30) was selected from the structural database and redesigned in silico. Among designs, a double variant KL-MHETase (I171K/G130L) with a similar protein melting temperature (67.58 °C) to that of the PET hydrolase FAST-PETase (67.80 °C) exhibited a 67-fold higher activity for MHET hydrolysis than FAST-PETase. A fused dual enzyme system comprising KL-MHETase and FAST-PETase exhibited a 2.6-fold faster PET depolymerization rate than FAST-PETase alone. Synergy increased the yield of TPA by 1.64 fold, and its purity in the released aromatic products reached 99.5%. In large reaction systems with 100 g/L substrate concentrations, the dual enzyme system KL36F achieved over 90% PET depolymerization into monomers, demonstrating its potential applicability in the industrial recycling of PET plastics. Therefore, a dual enzyme system can greatly reduce the reaction and separation cost for sustainable enzymatic PET recycling.


Asunto(s)
Hidrolasas , Tereftalatos Polietilenos , Hidrolasas/química , Tereftalatos Polietilenos/química , Tereftalatos Polietilenos/metabolismo , Hidrólisis , Carboxilesterasa , Plásticos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA